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COMMENT 

Comment on the q-analogues of the harmonic oscillator 

Y J Ng 
Institute of Field Physics, Department of Physics and Astronomy, University of North 
Carolina, Chapel Hill, NC 27599, USA 

Received 30 October 1989 

Abstract. The Heisenberg relation for the q-analogues of the quantum harmonic oscillator 
(introduced independently by Macfarlane and Biedenharn for the quantum group SU(2),) 
is derived by a method analogous to that used by Schwinger for the SU(2)  case. 1 also 
speculate on the possible use of the quantum group as a generalisation of quantum 
mechanics. 

Recently there has been a great deal of interest in the study of the quantum groups? 
in the context of exactly soluble statistical models, integrable systems in field theory, 
non-commutative geometry and  other fields. Of particular interest here is the develop- 
ment by Macfarlane [2] and  independently by Biedenharn [3] of a new realisation of 
the quantum group SU(2), in terms of the q-analogues of the quantum harmonic 
oscillator. If the important role played by the harmonic oscillator system in physics 
is any guide, it is quite possible that the q-oscillator plays a useful role in the study 
of SU(2),. In this Comment we will discuss a method (analogous to that used by 
Schwinger [4] in his development of the quantum theory of angular momentum) to 
derive the Heisenberg relation for the q-oscillator in its symmetrical form. Its con- 
sistency with the unsymmetrical form found in [2] and  independently postulated in 
[3] will be shown, and  other forms will be given. We will also discuss briefly the case 
of fermionic q-oscillators. 

The quantum group SU(2), is a q-deformation of the Lie algebra of SU(2). It is 
generated by three Hermitian operators J ,  , J 2 ,  J ,  or the more convenient combination 
J,, J - ,  J3 that obey the commutation relations 

[J , ,  J,] = *J= 

where J ,  = J ,  * iJ2 and  we have introduced the notation [ ] defined in terms of a 
parameter q (taken to be real for simplicity) 

- - 
[XI=---- 

4 - 4-’ 
or, in terms of y = log q, 

sinh yx eYx - e - Y t  

eY-e-’ sinh y 
-~ - [ X I  = 

t For a review see, e.g., [ 13 and references contained therein. 
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We note the following properties of [XI.  (i)  In the limit q +  1, i.e. 7-0,  [ x ] + x ;  
(ii) [-XI = -[XI; (iii) [ l ]  = 1 and [ O ]  = O t .  More importantly, [ ] is invariant under 
what we will call the duality transformation q e q - ’ ,  i.e. ‘ y- - y. 

We start with Jimbo’s representation [SI of (1) and (2), which acts in a Hilbert 
space with basis Ijm) according to 

J&m> = mljm) ( 5 )  

J * I j m ) = ( [ j ~ m ] [ j * m + l ] ) ” ~ l j m *  1) (6) 

where j = 0, f ,  1, i ,  . . . and -js m 6 j .  In the limit y+O, (5) and (6) reduce to the 
familiar result of the quantum theory of angular momentum. Equation ( 6 )  can be 
used successively to give 

J -J+l jm)=[ j -m][ j+m+l] l jn t )  ( 7 )  

J L  j m )  = [ j +  m ] [ j  - m + llljm). (8) 

Following Schwinger [4], we consider the j+co  limit of (7) and (8) in the following 
way. For the upper end portion of the spectrum m s j ,  the difference between j and 
m is finite, i.e. 

j + c ~  m + m  j - m = n I = 0 , 1 , 2 , 3  , . . . .  (9) 

In this large-j and large-m limit, one can use (7) and (8) respectively to yield (omitting 
the state Ijm) on both sides) 

Defining 

J+ a ,  =- m 
J -  a;=- m 

we can rewrite (10) and (1 1) respectively as 

a;a,  = [ N I ]  

a la ;  =[NI  +1] 

where we have recalled that J ,  and J - ,  and accordingly a ,  and a ; ,  are operators and 
have introduced the number operator N, which takes on values n, = 0, 1 , 2 , .  . . . The 
difference between (15) and (14) yields the commutator of a and a’ according to 

t Thus both the SU(2) ,  and  S U ( 2 )  give the same algebras for spin 0 (/,=O) and for spin-f (2/,=*1) 
systems, but different algebras for higher-spin systems. 
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For the sake of completeness, we remark that one can now construct a Hilbert space 
with basis In,) such that 

(17) 

with 

ailn,) = [ n ,  + 1 ] ” ~ 1 n ,  + I )  a,In,)= [ n l l ” 2 / n l  - 1 )  (18) 

where 

[ n , ] ! = [ n , ] [ n , - l ]  . . . [  2][1]. (19) 

In the limit y + O  (14)-(19) reproduce the familiar harmonic oscillator results, in 
particular 

[a ,  a - ]  = 1 y = o  (20) 

the old Heisenberg relation for the quantised harmonic oscillator. 
We can repeat the above procedure for the large-(mi portion of the lower end of 

the j + cc spectrum, with j + m = n, = 0,  1 , 2 , 3 , .  . . . To describe it one introduces 
another (independent) harmonic oscillator (labelled by subscript 2) obeying the same 
algebra (14)-(19) as the first oscillator (with subscript 1). The whole SU(2),  spectrum 
can now be described by two commuting oscillators so that 

(a;)””  
10) 

(ay)’-” 
lM)= ( [ j -  * ] ! ) I ”  ([j+*]!)”’ 

and the original SU(2),  algebra (1)  and  (2)  can be satisfied with the following 
identification: 

J- = ala,  J ,  = a l a ,  2J7= Nz- NI.  (22) 

(For the last identification, it is helpful to note that [NI][ N,+ 1 1  -[NI + 1][ NJ = 
[NI - N,].) Thus we have a new realisation [2 ,3]  for SU(2), analogous to that of 
Schwinger, Bargmann and  Jordan? for the algebra of quantum angular momentum. 

It remains for us to show that the Heisenberg relation for the q-oscillator given by 
(16) is consistent with that found in [2] and [3]. The Heisenberg relation proposed 
in [2] and [3] has the following unsymmetrical form: 

a a - - q - ‘ a - a  =q‘ (23) 

which we rewrite as 

But we can use the fact that [ 3 is invariant under the duality transformation 4-q-I 
to cast (24a) in the form 

(24b) 

where we have used (14) and ( 1 5 ) .  The consistency between (16) and (24) is now 
obvious. 

q - l , ’ a a - - q l l ‘ a ’ a  = q - l ‘ ’ + l  21 

+ See [ 6 ] .  
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Actually (16) is only one particular form of the Heisenberg relation (albeit the 
most natural one).  Using (14) and (15) one can express the 'Heisenberg relation' in 
many different ways, e.g. (23) (the unsymmetrical one proposed in [2] and [3]), its 
dual form 

ua' - = q-N (25) 

and t 
uu'+q"+'u+u = q N [ 2 N +  13. 

One can also discuss the fermionic q-oscillators. The number operator N, for this 
case, can take on values n = 0, 1 only. The Hilbert space with basis In) is constructed 
such that 

Nln) = njn) 11) = b'IO) 

610) = 0 = b'/ 1) (17') 

{b, b} = 0 = {b', b'} 

where we have used { , } to denote the anticommutator and b, b' are respectively the 
annihilation and creation operators for the fermionic q-oscillators. The fermionic 
analogues of (14) and (15) are respectively 

b'b = [NI + N 

bb'= [ 1 - N] + 1 - N 

(14') 

(1 5 ' )  

from which follows the Heisenberg relation 

where we have made use of the fact that N can only take on values 1 or 0. We can 
also express the 'Heisenberg relation' in the following forms (which are the fermionic 
analogues of (23) and (26) respectively): 

(23') 

bb'-q2N-'b'b = qN[1-2N] .  (26') 

bb'+ qbib = q N  

We conclude with some speculations on the possible use of the quantum group as 
a generalisation of quantum mechanics. The SU(2), algebra (1)  and ( 2 )  is obviously 
a simple generalisation of the usual quantum angular momentum algebra. The question 
is: what role does the parameter y play? At least three possible roles come to mind. 
(i) Quantum mechanics makes use of flat Hilbert spaces; in the generalised quantum 
mechanics, y may play the role of a small curvature of the Hilbert spaces. (ii) Quantum 
mechanical descriptions of a quantum system under study ignores the quantum effects 
of the system on the observer; in the generalised quantum mechanics, y may parametrise 
the back reactions of the system on the observer and the resulting additional effects 
of the observer on the system and so on. (Note that even the form of [ 3 suggests an 
infinite series.) (iii) The SU(2), algebra (1) and (2) treats the third direction (along 
which quantum measurements are made) differently from the first and second directions. 

t Although normally one does not regard (26) (or similar expressions) as a form of Heisenberg relation. 
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I f  the operators J,  are taken to be the generators of rotationsf, then, according to the 
SU(2), algebra, rotational symmetry is broken and y is a measure of the symmetry 
breaking$$. Finally we note that if indeed y # 0 it is also conceivable that y is given 
by a ratio of quantities associated with the system under consideration and some 
dimensionful physical constants; one of them may even be a new physical constant! 
Although y = 0 at low energies, it may take on significantly different values at high 
energies (for example, in the early universe?) These are all interesting speculations. 
But independent of them, the physical relevance of the quantum group is beyond 
doubt. The q-oscillators may yet play a useful role in physics. 

Acknowledgments 

I thank L Biedenharn, P Frampton, E Merzbacher, M Ubriaco and H van Dam for 
useful conversations. This work was supported in part by the US DOE under grant 
no DE-FG05-85ER-40219. 

References 

[ l ]  De Vega H J 1989 I n f .  J.  Mod.  Phys. A 4 2371 
[2] Macfarlane A J 1989 J. Phys. A: Marh. Gen. 22 4581 
[3] Biedenharn L C 1989 J. Phys. A: Marh. Gen. 22 L873 
[4] Schwinger J 1968 Haroard Unioersity lectures (unpublished) 
[5] Jimbo M 1985 Left. Math. Phys. 10 63 
[6] Biedenharn L C and van Dam H 1965 Quanrum n e o r y  of Angular Momenrum (New York: Academic) 

f Related questions include how to define the orbital angular momentum in terms of coordinates r and 
linear momenta p such that (1) and (2) are satisfied. Furthermore, do r and p appropriately obey the 
canonical commutation relations? What is the classical (Poisson bracket) analogue of ( 1 )  and (2)? Or is 
it possible that the orbital angular momenta obey the standard SU(2)  algebra while the intrinsic ?pins obey 
the new SU(2), algebra? 
i In statistical mechanical models y is a measure of anisotropy. 
5 The idea of spontaneous breaking of rotational symmetries may be related to the fact that, of all possible 
directions, one makes a quantum measurement along one particular direction. 


